MTH 201 Multivariable calculus and differential equations Homework 5 Mean value theorem, maxima and minima

- 1. Compute the gradient vector and Hessian matrix for each of the following functions
 - (a) $f(x,y) = e^{xy} \sin(x^2 + y^2)$
 - (b) $f(x, y) = \frac{\sin x}{1+y^2}$
 - (c) $f(x, y) = x^2 y^2$
 - (d) $f(x,y) = (x+y)^2 x^4$.
- 2. Find an equation of tangent plane to the surface $3xy + z^2 = 4$ at (1, 1, 1).
- 3. Find unit normal to the ellipsoid $x^2 + 2y^2 + 3z^2 = 10$ at $(\sqrt{10}, 0, 0)$.
- 4. Check if the following functions satisfy the hypothesis of mean value theorem
 - (a) $f(x,y) = x \sin y$
 - (b) $f(x,y) = x^2 + y^2$
 - (c) $f(x,y) = \sqrt{x^2 + y^2}$.
- 5. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be such that $f_x = 0$ and $f_y = 0$. Then show that f is a constant function.
- 6. Let $f : B(\mathbf{0}, 5) \to \mathbb{R}$ be a continuous function such that f(1, 0) = 2 and f(0, 1) = 10. Show that there exists a point $(x_0, y_0) \in B(\mathbf{0}, 5)$ such that $f(x_0, y_0) = 5$. Here $B(\mathbf{0}, 5)$ denotes the open disc in \mathbb{R}^2 with radius 5 and centred at (0, 0).
- 7. Find the critical points of functions given below and determine whether they are local maxima, local minima, or saddle points
 - (a) $f(x,y) = (x^2 y^2)e^{\frac{-x^2 y^2}{2}}$ (b) $f(x,y) = xy + y^2$ (c) $f(x,y) = x^4 + y^2$ (d) $f(x,y) = x^3 + y^3 - 3xy + 4$ (e) $f(x,y) = (x+y)^2 - x^4$.
- 8. Find absolute maximum and minimum values of $f(x, y) = x^2 + 2y^2$ on the disc $x^2 + y^2 \le 1$.
- 9. Find absolute maximum and minimum values of $f(x, y) = 2x^2 y^2 + 6y$ on the disc $x^2 + y^2 \le 16$.
- 10. Find absolute maximum and minimum values of $f(x, y) = 2 + 2x + 2y x^2 y^2$ on the triangular region in first quadrant bounded by x = 0, y = 0, and y = 9 x.
- 11. Find absolute maximum and minimum values of $f(x, y) = x^2 + 4y^2 2x^2y + 4$ on the square given by $-1 \le x \le 1, -1 \le y \le 1$.
- 12. Find maximum and minimum values of $f(x, y) = x^2 y^2$ subject to the constraint $x^2 + y^2 = 1$.

MTH 201 Homework 5 (Continued)

- 13. Find maximum and minimum values of $f(x, y) = x^2 y^2$ subject to the constraint y x = 1.
- 14. Find maximum and minimum values of f(x, y) = 5x 3y subject to the constraint $x^2 + y^2 = 136$.
- 15. Find maximum and minimum values of f(x, y, z) = x + z subject to the constraint $x^2 + y^2 + z^2 = 1$.
- 16. Find maximum and minimum values of f(x, y, z) = xyz subject to the constraint x + y + z = 1.
- 17. Find the shortest distance from the point (1, 0, -2) to the plane x + 2y + z = 4.
- 18. Find the shortest distance from the point (-2, -1, 5) to the plane 4x 2y + z = 1.
- 19. Among all triangles with a fixed perimeter find the one with maximum area.