Multivariable calculus and differential equations
 Homework 5
 Mean value theorem, maxima and minima

1. Compute the gradient vector and Hessian matrix for each of the following functions
(a) $f(x, y)=e^{x y} \sin \left(x^{2}+y^{2}\right)$
(b) $f(x, y)=\frac{\sin x}{1+y^{2}}$
(c) $f(x, y)=x^{2}-y^{2}$
(d) $f(x, y)=(x+y)^{2}-x^{4}$.
2. Find an equation of tangent plane to the surface $3 x y+z^{2}=4$ at $(1,1,1)$.
3. Find unit normal to the ellipsoid $x^{2}+2 y^{2}+3 z^{2}=10$ at $(\sqrt{10}, 0,0)$.
4. Check if the following functions satisfy the hypothesis of mean value theorem
(a) $f(x, y)=x \sin y$
(b) $f(x, y)=x^{2}+y^{2}$
(c) $f(x, y)=\sqrt{x^{2}+y^{2}}$.
5. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be such that $f_{x}=0$ and $f_{y}=0$. Then show that f is a constant function.
6. Let $f: B(\mathbf{0}, 5) \rightarrow \mathbb{R}$ be a continuous function such that $f(1,0)=2$ and $f(0,1)=10$. Show that there exists a point $\left(x_{0}, y_{0}\right) \in B(\mathbf{0}, 5)$ such that $f\left(x_{0}, y_{0}\right)=5$. Here $B(\mathbf{0}, 5)$ denotes the open disc in \mathbb{R}^{2} with radius 5 and centred at $(0,0)$.
7. Find the critical points of functions given below and determine whether they are local maxima, local minima, or saddle points
(a) $f(x, y)=\left(x^{2}-y^{2}\right) e^{\frac{-x^{2}-y^{2}}{2}}$
(b) $f(x, y)=x y+y^{2}$
(c) $f(x, y)=x^{4}+y^{2}$
(d) $f(x, y)=x^{3}+y^{3}-3 x y+4$
(e) $f(x, y)=(x+y)^{2}-x^{4}$.
8. Find absolute maximum and minimum values of $f(x, y)=x^{2}+2 y^{2}$ on the disc $x^{2}+y^{2} \leq 1$.
9. Find absolute maximum and minimum values of $f(x, y)=2 x^{2}-y^{2}+6 y$ on the disc $x^{2}+y^{2} \leq 16$.
10. Find absolute maximum and minimum values of $f(x, y)=2+2 x+2 y-x^{2}-y^{2}$ on the triangular region in first quadrant bounded by $x=0, y=0$, and $y=9-x$.
11. Find absolute maximum and minimum values of $f(x, y)=x^{2}+4 y^{2}-2 x^{2} y+4$ on the square given by $-1 \leq x \leq 1,-1 \leq y \leq 1$.
12. Find maximum and minimum values of $f(x, y)=x^{2}-y^{2}$ subject to the constraint $x^{2}+y^{2}=1$.

MTH 201 Homework 5 (Continued)

13. Find maximum and minimum values of $f(x, y)=x^{2}-y^{2}$ subject to the constraint $y-x=1$.
14. Find maximum and minimum values of $f(x, y)=5 x-3 y$ subject to the constraint $x^{2}+y^{2}=136$.
15. Find maximum and minimum values of $f(x, y, z)=x+z$ subject to the constraint $x^{2}+y^{2}+z^{2}=1$.
16. Find maximum and minimum values of $f(x, y, z)=x y z$ subject to the constraint $x+$ $y+z=1$.
17. Find the shortest distance from the point $(1,0,-2)$ to the plane $x+2 y+z=4$.
18. Find the shortest distance from the point $(-2,-1,5)$ to the plane $4 x-2 y+z=1$.
19. Among all triangles with a fixed perimeter find the one with maximum area.
